Устройство и классификация аккумуляторных батарей для автомобилей

Устройство и классификация аккумуляторных батарей для автомобилей Все аккумуляторы похожи друг на друга, как родные братья: большая банка с кислотой, из которой торчат два свинцовых токовода. Принцип действия всех современных аккумуляторов одинаков. Он не изменился за последние 138 лет, с того момента, как впервые в 1860 году Гастон Планте подарил Французской Академии наук первую аккумуляторную батарею. Ее активная площадь занимала 10 кв. м, и такой аккумулятор требовал для подзарядки месяцы, а то и годы. Удивительно, но несмотря на все разговоры ученых о том, что мы стоим на пороге революции в накопителях тока, их принципиальная конструкция остается неизменной. Напрочь презирая новомодные кадмиево-никелевые системы и загадочные “топливные ячейки”, автомобилисты всего мира используют все ту же кислоту и тот же свинец.
Тем не менее отличия современных аккумуляторов от тех, что использовал Гастон Планте, почти так же велики, как и разница между дешевыми конструкциями, в которых действительно только банка с кислотой и больше ничего, и сложными системами, вобравшими в себя технический опыт прошедших 138 лет. Усовершенствования аккумуляторных батарей произошли в области материала пластин, общей конструкции и, в частности, в решении вопроса сбора и возвращения испаряющейся воды (системы кондиционирования).


Материал пластин аккумуляторов

Чистый свинец, из которого первоначально делались и пластины и паста, практически непригоден при современной поточной технологии изготовления аккумуляторов. Для изготовления решетчатой структуры (обычно литьем) и последующего нанесения пасты нужен материал с более высокими механическими свойствами. Для их достижения в свинец добавляли сурьму.
Легирование свинца сурьмой, обычно от 6 до 12 %, приводит к тому, что гидролиз воды (электролитическое разложение на водород и кислород) происходит уже при 12В. Это означает, что даже при нормальном состоянии электрической системы автомобиля вода постоянно расходуется, улетучиваясь в воздух в виде газа. Не нужно быть экспертом, чтобы понять, что при неисправностях электросистемы автомобиля, ведущих к повышению и скачкам напряжения в ней, этот процесс многократно усиливается.
Это было привычно и понятно, и аккумулятор у советских автомобилистов прочно ассоциировался с необходимостью по крайней мере раз в год откручивать крышки и проверять уровень воды. Если ее было недостаточно и на ее поверхности появлялись верхние края решетки, необходимо было искать дистиллированную воду, спрашивать у друзей или соседей по гаражу странный предмет под названием денсиметр (похож на клизму со встроенным поплавком) и пускаться в домашние химические опыты. Теперь внимание, попробуйте запомнить! Ни в коем случае нельзя вливать воду в кислоту, только наоборот! Иначе может произойти мини-взрыв, и не только ваши джинсы будут прожжены кислотой (вполне нормально, было хоть раз с каждым), вам практически гарантированы тяжелые травмы и ожоги.
Лень и чувство самосохранения автолюбителей Запада заставили их решить проблему испарения воды. Если количество сурьмы свести к минимуму или заменить ее другим элементом, то аккумулятор можно сделать практически необслуживаемым. Американцы из фирм Delco Remy и GNB в 50-е годы реализовали так называемый кальциевый свинец, а европейцы — малосурьмянистый (Baren, Varta, Bosch). Полученные в результате конструкции обеспечивали стойкость к гидролизу при напряжениях до 16В и выше, а значит, при нормально работающей электросистеме (напряжения в пределах 14В) вода практически не испаряется, и аккумулятор можно сделать герметично закрытым на все время его эксплуатации.
Таким образом, сегодня различают четыре основных разновидности аккумуляторов — “классические” обслуживаемые (сурьмянистый свинец), малосурьмянистые, кальциевые и гибридные (комбинированные). В последних отрицательные пластины делают из кальциевого свинца, а положительные — из малосурьмянистого. Такой выбор не случаен. При всех достоинствах кальциевых аккумуляторов один “смертельный” недостаток у них все-таки есть. При длительной глубокой разрядке их положительные пластины покрываются сульфатом кальция, блокирующего электрохимические реакции. Этот процесс, в отличие от образования знаменитого сульфата свинца, необратим.

От чего умирают аккумуляторы

Главной причиной смерти аккумуляторов является физика электрохимического процесса зарядки и разрядки. Получая и отдавая ток, пластины с нанесенной на них пастой расширяются и сжимаются. Это происходит циклично много сотен и тысяч раз, и в результате происходит механическое разрушение их структуры. Нанесенная на решетчатые пластины паста опадает с них, скапливаясь на дне. Как результат, еще до того, как рабочие поверхности оголятся и потеряют способность удерживать заряд, накопившийся шлам замкнет положительные и отрицательные пластины.
Временное решение существует. Первоначально на дне аккумуляторов делались дополнительные емкости-отстойники, перегороженные ребрами, в которые собирался шлам. Дальнейшие труды конструкторов и разработчиков привели к появлению конвертов-сепараторов. Сепараторы, как следует из названия, разделяют отрицательные и положительные пластины. Выполненные из пористого материала (полиэтилен в последнее время), они, как губка, пропитаны электролитом и позволяют пластинам быть расположенными практически вплотную друг к другу. Это значительно уменьшает размеры аккумуляторов и повышает их стойкость к механическим нагрузкам, ведь теперь внутри их находятся плотно упакованные “пакеты”, а не болтающиеся решетки.
Дальше, если сепараторы закрыть с трех сторон, они превращаются в своеобразные конверты, в которых и накапливается опадающая с поверхности каждой пластины отработанная свинцовая паста. В результате этого потребность в отстойнике отпадает, пакеты пластин можно фиксировать прямо на дне, что еще больше повышает стойкость и сопротивляемость к вибрациям и ударам. Высвобождается также дополнительное пространство по высоте. Его используют, создавая дополнительные резервы электролита (повышает общее время жизни аккумулятора) и систему конденсирования и сбора испаряющейся воды (см. предыдущую скобку).
Аккумуляторы одинаково боятся перезарядки и глубокой разрядки. В первом случае происходит интенсивное окисление, разрушение и осыпание материала положительных пластин, а во втором начинается оплывание пасты с отрицательных решеток. Перезарядка может наступить как на работающем автомобиле в случае неисправности электросистемы, так и при стационарной зарядке аккумулятора, когда вы отвлеклись, забыли, в общем, прозевали момент, когда он начал бурлить, интенсивно разлагая воду. Кальциевые и гибридные аккумуляторы в гораздо меньшей степени подвержены этой угрозе, потому что состав их свинца обеспечивает свойства своеобразной “самовыключаемости” — они перестают принимать ток, когда заряжены на 95-97 %.
Глубокая разрядка происходит чаще всего по вине электросистемы (неисправный генератор), по причине ослабленного ремня генератора, окисления многочисленных контактов, а также замыканий на корпус, когда ток идет не к батарее, а на нагревание окружающего воздуха всей массой автомобиля. Возникшие неполадки легко заметить по неожиданно появившимся проблемам пуска двигателя. Устраняются они стационарной зарядкой, а также поиском и устранением собственно причины потери тока.

Пожалуйста, оцените эту страницу


.




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

MAXCACHE: 0.48MB/0.02632 sec